人物經(jīng)歷
教育背景
1991-1995,河北師范大學數(shù)學教育專業(yè)學士。
1995-1998,河北師范大學基礎數(shù)學專業(yè)碩士。
2003-2006,河北師范大學基礎數(shù)學專業(yè)博士。
工作經(jīng)歷
2013年,香港大學訪問學者。
1998年,在河北師范大學工作。
科研方向
教學課程
主講《數(shù)學分析》, 《常微分方程》, 《高等數(shù)學》
研究領域
微分方程穩(wěn)定性
著述成果
1. Qiaoluan Li, Wingsum Cheung, An Opial-type inequality on time scales. Absract and Applied Analysis, Article ID 534083, 5pages, 2013.(SCI)
2. Qiaoluan Li, Wingsum Cheung, ?Interval Oscillation Criteria for Second Order Forced Delay Differential Equations under Impulse Effects, Electronic J. Diff. Equa., ?2013(44):1-11, 2013 (SCIE)
3. Qiaoluan Li, Haiyan Liang, Zhenguo Zhang, Yuanhong Yu .Oscillation of Second Order Self-conjugate Differential Equation with Impulses[J]. Journal of Computational and Applied Mathematics,2006,197: 78-88.(SCI)
4. Qiaoluan Li, Haiyan Liang, Wenlei Dong, Zhenguo Zhang. Existence of nonoscillatory solutions of?
higher-order difference equations with positive and negative coefficients[J]. Bull. Korean Math.Soc., 2008,?
45: 23-31.(SCIE)
5. Haiyan Liang, Qiaoluan Li, Zhenguo Zhang. New oscillatory criteria for higher-order nonlinear neutral delay differential equation[J]. Nonlinear Analysis, 2008, 69: 1719-1731.(SCI)
6. Qiaoluan Li, Zhenguo Zhang, Fang Guo, Zhiyong Liu, Haiyan Liang. Oscillatory Criteria for Third Order Difference Equation With Impulses[J]. ?Journal of Computational and Applied Mathematics, 2009, 225: 80-86. (SCI)
7. Zhenguo Zhang, Wenlei Dong, Qiaoluan Li , Haiyan Liang. Positive solutions for higher order nonlinear neutral dynamic equations on time scales[J]. Appl.Math.Model., 2009, 33: 2455-2463.(SCI)
8. Qiaoluan Li , Chunjiao Wang, Fang Li, Haiyan Liang, Zhenguo Zhang. Oscillation of Sublinear Difference Equations with Positive Neutral Term[J]. Journal of Applied Mathematics & Computing,2006, 20: 305-314.(EI)
9. Zhang Zhen-guo, Dong Wen-lei, Li Qiao-luan, Existence of nonoscillatory solutions for higher oder neutral?
dynamic equations on time scales, J. Appl Math Comput, 28(2008), 29-38. (EI)
10. Qiaoluan Li, Lina Zhou, Oscillation criteria for second-order impulsive dynamic equations on time scales, ?Applied Mathematics E-Notes, 11(2011), 33-40.
11. Haifeng Liu, Qiaoluan Li, Asymptotic behavior of ?second-order impulsive differential equations, Electronic Journal of Differential Equations, Vol. 2011(2011), No. 33, pp. 1--7.
?12. Li Qiao-luan, Zhang Zhen-guo ,Existence of solutions to n-th order neutral dynamic equations on time scales,Electronic Journal of Differential Equations, Vol. 2010(2010), No. 151, pp. 1--8.
13. Li Qiaoluan, Guo ?Fang, ?Oscillation of ?Solutions ?to ?Impulsive ?Dynamic Equations ?On ? Time Scales, ?Eelectronic J. Diff.Equa., 2009(2009), No.122, 1-7.
14. Li Qiao-luan, Liu Zhi-yong, Oscillation of Nonlinear Equations On Time Scales, J. Appl Math & Informatics, 27(2009), No, 1-2, 327-334.