欧美在线一级ⅤA免费观看,好吊妞国产欧美日韩观看,日本韩国亚洲综合日韩欧美国产,日本免费A在线

    <menu id="gdpeu"></menu>

  • 張芷芬

    張芷芬

    張芷芬,數(shù)學家。從事常微分方程定性理論和拓撲動力系統(tǒng)理論的研究,是國內這一領域的開拓者之一。1951年畢業(yè)于北京大學數(shù)學系。1957年獲蘇聯(lián)莫斯科大學數(shù)學力學系研究生院物理數(shù)學副博士學位。歷任北京大學副教授、教授、數(shù)學系副主任,北京市數(shù)學學會副理事長。曾獲全國三八紅旗手稱號。專于微分方程的定性理論和動力系統(tǒng)研究。對李奈方程極限環(huán)的存在性和唯n性問題有較深造詣。合著《微分方程定性理論》。


    人物生平

    1927年1月8日 出生在浙江省慈溪縣。

    1946年11月-1947年6月 北京大學先修班學習。

    1947年9月-1951年6月 北京大學數(shù)學系學習,畢業(yè)。

    1951年6月-1952年3月 北京大學數(shù)學系助教。

    1952年3月-1953年3月 北京俄文專修學校學習。

    張芷芬

    1953年3月-1954年9月 國家計劃委員會工作。

    1954年10月-1957年11月 莫斯科大學力學數(shù)學系研究生畢業(yè),獲副博士學位。

    1957年11月-1960年 北京大學力學數(shù)學系教員。

    1960-1966年 北京大學力學數(shù)學系副教授,北京大學力學數(shù)學系副系主任。

    1983年至今 北京大學力學數(shù)學系教授、博士生導師。

    學術貢獻

    關于李納方程極限環(huán)的個數(shù)

    1.關于李納方程極限環(huán)的唯一性

    關于極限環(huán)的唯一性問題要比存在性問題難些,直到20世紀四五十年代才有N.萊文森(Levinson),G.桑索內(Sansone),R.孔蒂(Conti),J.I.馬賽拉(Massera)等人的惟一性定理,而他們得到的充分條件都加在函數(shù)g(x),f(x),或F(x)的對稱性或它們零點的對稱性上。1957年張芷芬在副博士論文中第一次指出,阻尼函數(shù)的凹凸性是影響極限環(huán)唯一性的更本質的性質,實際上f(x)的星形性就能保證唯一性。她在1958年和1986年發(fā)表的文章中,對廣義李納系統(tǒng)在常規(guī)條件下,證明了若導函數(shù),(0,+

    ∞)),則(4)的極限環(huán)唯一。這一結果一直被國內外同行廣泛地引用。如見秦元勛的“微分方程所定義的積分曲線”(下冊)(1959),葉彥謙的“極限環(huán)論”(1984),桑索內和孔蒂的書“非線性微分方程”(“Non-linear Differential Equations”)(1964),L.佩柯(Perko)的書“微分方程和動力系統(tǒng)”(“Differential Equations and Dynamical Systems”)(1993)。在二次多項式系統(tǒng)和生物數(shù)學等領域中的極限環(huán)唯一性問題,很多都是利用這個唯一性定理證明的。 1982年張芷芬的學生和同事曾憲武對系統(tǒng)(1)的唯一性定理作了本質性推進,在阻尼函數(shù)沒有對稱性和凸凹性的限制下,他對發(fā)散量積分用分段估算、相互補償?shù)霓k法作了更精細的估計。接著張芷芬和曾憲武、高素志又將此結果從系統(tǒng)(1)推廣到系統(tǒng)(4)。他們總結了二三十年來的相關結果,經(jīng)深入研究,發(fā)表了論文:“On the uniqueness of the limit cycle of the generalized Lienard equation”,它不是一篇簡單的綜合文章,文中最前面的11條引理揭示了方程(4)的發(fā)散量積分的最本質特性,每個定理后面的推論都指出了定理的要點和如何應用,已有的很多唯一性都是本文推論的特例。

    2.關于一類周期阻尼李納方程極限環(huán)的惟n性

    1980年張芷芬第一個證明方程

    對一切μ≠0,在相空間(x,)的帶域||≤(n+1)π上恰好有n個極限環(huán)這個有多年歷史的猜想(n=0,1,2,…)。此結果引起國內外同行們的關注。不但因為它是多年來未解決的猜想,還因為它與希爾伯特第16問題相關。已知解析系統(tǒng)在有界區(qū)域內極限環(huán)個數(shù)有限。方程(5)是解析系統(tǒng),它卻有無窮多極限環(huán)在無窮遠密集,它用實例揭示解析性只能保證極限環(huán)個數(shù)的局部有限性,卻不能保證全局有限性,只有多項式系統(tǒng)的極限環(huán)個數(shù)才在全平面有限。

    關于拓撲動力系統(tǒng)

    1.非齊性極小集合

    完備度量空間上定義的幾乎周期極小集合是緊致的拓撲群,群的運算能一致地擴充到閉包,因而是齊性的,即每一點的維數(shù)相同。E.E.弗洛伊德(Floyd)在R2的正方形的閉子集上所定義的離散動力系統(tǒng),它是非齊性的,它有0維和1維點。張芷芬在一個n維正方形的閉子集上定義的離散動力系統(tǒng),它有0,1,…,n-1維點。仿此,可定義一n維緊致非齊性極小集合,它有且僅有0,k1,k2,…,kj維點,其中0≤k1≤k2≤…≤kj≤n-1。由此可見幾乎周期極小集和極小集的差異。G.D.伯克霍夫(Birkhoff)猜想,在n維流形上定義的極小集合都是齊性的。A.馬爾可夫(Markov)證明此猜想對有限維連續(xù)流極小集合是對的。

    2.安東尼(Antonie)項鏈

    20世紀50年代W.H.戈特沙爾克(Gottschalk)提出,能否定義一個以安東尼項鏈A為極小集合的拓撲動力系統(tǒng)。1982 年張芷芬在“中國科學”上發(fā)表的文章中定義了R3到自身的拓撲映射Φ,使得A是(R3,Φ)的一個完全不連通的緊致完全的不變集(它與康托(Cantor)集等價),而R3/A不簡單連通(項鏈之名由此而來),A恰發(fā)是離散動力系統(tǒng)(R3,Φ)的極小集,從而第一次肯定地回答了戈特沙爾克的問題。進而,A還是(R3,Φ)的幾乎周期極小集,故它是齊性的,每一點的維數(shù)為0,于是,A不但是緊致拓撲群,還是單純拓撲群,即它有一稠密的循環(huán)子群。A的動力學異常簡單,但A的幾何卻并不簡單,A顯然不是有限個流形的并。

    關于向量場分岔理論

    張芷芬從20世紀80年代起開始關心向量場的分岔理論,主要是哈密頓向量場的分岔問題,即系統(tǒng)(2)的極限環(huán)個數(shù)問題,也稱弱希爾伯特第16問題。

    設H=h0和H=h1分別對應哈密頓向量場dH=0的奇點和奇閉軌。設閉軌Гh是H-1(h)(h0龐加萊映射為Pε(h),則位移函數(shù)

    △Pε=△Pε(h)-h=εM1+o(ε)

    是阿貝爾(Abel)積分,也稱一階梅利尼柯夫(Melnikov)函數(shù)。

    擾動系統(tǒng)(2)有閉軌的充要條件是位移函數(shù)△Pε=0,M1(h)是位移函數(shù)對ε而言的一階近似,故它在(h0,h1)上的孤立零點個數(shù)(計重次)N(m,n)與系統(tǒng)(2)的極限環(huán)個數(shù)緊密相關,其中degH=m+1,max(degP,degQ)=n。

    1.對m=n=2,給出N(m,n)的準確估值

    當m=2,dH=0共有5種通有情形和8種非通有情形。已證得N(2,2)=2或3。其中8種非通有情形由I.D.伊利耶夫(Iliev)、李承治和趙育林等解決。5種通有情形之一由張芷芬和李承治解決。最近李承治和他的學生陳風德等在實域中給5種通有情形一種統(tǒng)一的證明。

    2.關于龐特里亞金定理的推廣

    1934年龐特里亞金證明,當系統(tǒng)(2)的右側充分光滑,且M1(h*)=0.M(h*)≠0,則系統(tǒng)(2)有唯一極限環(huán)Lh。它連續(xù)依賴于ε,Lh→Гh*,當ε→0;且Lh穩(wěn)定(不穩(wěn)定),當εM1(h*)<(>)0。張芷芬在副博士論文中,在同樣假設下證明,當(h*)=0(k=0,1,2,…,n-1),而(h*)≠0,則存在充分小ε0>0,δ0>0。系統(tǒng)(2)至多有n個極限環(huán)在δ(Гh*)=U Гh中,當|ε|ε0。此結果被《蘇聯(lián)數(shù)學四十年》所引用。

    3.多角環(huán)的環(huán)性

    多角環(huán)分兩大類:無窮余維和有限k余維。

    對第一類環(huán),張芷芬和她的學生李寶毅在一定非退化條件下證得S(2)的環(huán)性為2等。對余維k的環(huán),已知它的環(huán)性E(k)≤k,當k=1,2;E(k)>k,當k≥4。張的博士生趙麗琴,在論文中圓滿地回答了此問題,她證得E(k)≤k,當且僅當k=1,2,3。

    張芷芬教授評價

    4.閉曲面上的“蘭天災變”,一類全局分岔

    J.帕里斯(Palis)等學者于1975年在Lecture Notes Math.468卷的一篇文章中提出了動力系統(tǒng)中未解決的五十個問題,其中第三十七問題是:在單參數(shù)通有向量場族中能否發(fā)生“蘭天災變”,即在C∞緊致流形M上,定義連續(xù)向量場族Xμ(μ∈R),若存在連續(xù)映射L:(μ0-ε,μ0)→[Xμ的閉軌L(μ)],當μ→μ0,L(μ)的周期T(μ)→∞,但L(μ)不趨于Xμ的任何奇點,這時叫“蘭天災變”,即閉軌L(μ)由于周期T(μ)趨于無窮而突然消失,但這不是由于它靠近奇點引起的。李偉固和張芷芬在閉曲面上較徹底地解決了此問題。他們證明,除了S2和P2外,“蘭天災變”可在任何閉曲面上發(fā)生,但對單參數(shù)通有族,它只能在克萊因(Klein)瓶K2上發(fā)生,且就是通過一種特定途徑發(fā)生。

    5.可積非哈密爾頓系統(tǒng)

    關于弱希爾伯特第十六問題,目前遺留下來的問題很多也很難,其中值得一提的是可積非哈密爾頓系統(tǒng)。由于積分因子一般而言很不規(guī)正。阿貝爾積分號下乘上這樣的因子便寸步難行,已有的工作屈指可數(shù)。但若可積系統(tǒng)具有理中心,即圍繞中心的是有理代數(shù)閉曲線,則由達布定量,系統(tǒng)的積分因子是有理函數(shù)。對于中心附近圍繞的是低次代數(shù)閉曲線的情形,張芷芬和她的同事們證明了對一切系統(tǒng),當中心附近圍繞二次代數(shù)曲線時,則N(n)=O(n)。對一切二次多項式系統(tǒng),當中心附近是三次代數(shù)曲線,或四次代數(shù)曲線時,也有N(n)=O(n)。這些工作可算是對這艱難問題邁出了一步。

    在以上3個科研方向上,張芷芬和學生以及同事在國內外雜志上合作發(fā)表了50余篇論文!袄罴{方程極限環(huán)個數(shù)問題和拓撲動力系統(tǒng)的幾個例子”獲國家教委1988年科技進步二等獎。

    教學和研究生培養(yǎng)

    自1957年以來,在教書育人的工作中,張芷芬的主要精力放在高年級大學生和研究生的培養(yǎng)上。她認識到,要為國家培養(yǎng)高質量的人才,使他們在今后的崗位上繼續(xù)奮進,逐步站在學科發(fā)展的前沿,是非常艱巨的任務。

    自20世紀60年代起,張芷芬先后幾次為高年級大學生和研究生開設過微分方程定性理論專門化課,后來以此講義為基礎,她與丁同仁、黃文灶、董鎮(zhèn)喜合作寫成教材,于1985年由科學出版社作為現(xiàn)代數(shù)學基礎叢書出版,1997年重印,1992年由美國數(shù)學會出版社譯成英文作為數(shù)學專著譯叢第101卷出版發(fā)行。

    與此同時,張芷芬和丁同仁、黃文灶等合作為高年級學生和青年教師開設拓撲動力系統(tǒng)討論班,基本教材是張芷芬的導師涅梅茨基和V.V.斯捷潘諾夫(Stepanov)的《定性理論》一書的有關章節(jié)和他的兩篇綜合文章,培養(yǎng)了兩屆六年制大學生,共完成畢業(yè)論文十余篇,有的達到了碩士論文水平。這些論文加上教師完成的論文,共回答了涅梅茨基綜合文章中所列舉的未解決問題的一半。

    自1981年起的十余年間,張芷芬與李承治、李偉固等從未間斷地組織了有關向量場分岔理論和動力系統(tǒng)方面的討論班,系統(tǒng)地閱讀一些基本文獻和重要的新結果。

    討論班的學術活動大大地拓寬了師生們的眼界。關于研究生培養(yǎng),除了學生來源等問題外,張芷芬認識到對于教師來說,首要的是選題,要盡可能地根據(jù)學生實際情況,又要讓論文方向更接近前沿,使他們畢業(yè)后值得繼續(xù)探索。其次是要給他們從閱讀文獻,提出問題到解決問題的全過程的培養(yǎng)。每篇論文都應有攻堅之處,要讓學生自己去攻克,使他們經(jīng)過這番磨練,提高能力,增強信心,畢業(yè)后仍有膽識去獨立地開展研究工作。她領導的討論班也在研究生培養(yǎng)中起著重要作用。這一期間,張芷芬共培養(yǎng)碩士生8名,博士生11名。今天他們大都成為有關院所的專家、教授,其中有李承治、鄭志明、李偉固、張偉年、李翠萍、肖冬梅、曹永羅、齊東文、王蘭宇、趙麗琴、趙育林、李寶毅、汪天喜等。

    TAGS: 張芷芬
    名人推薦
    • 阿爾曼多·伊安努奇
      阿爾曼多·伊安努奇(Armando Iannucci),1963年11月28日出生于英國蘇格蘭格拉斯哥,編劇、制片、導演、演員。阿爾曼多·伊安努奇曾作為《二當家》、《靈通人士》、《...
    • 陳潔
      陳潔,女,廣東潮陽人,1990年11月出生,中國大陸戲曲演員。2007年12月主演的張怡凰獲首屆中國戲劇獎梅花表演獎。
    • 李雪兒
      李雪兒,韓國女歌手。2014年12月,李雪兒參加《Kpop Star 4》選秀節(jié)目,發(fā)行人氣單曲《以媽媽的身份活著》被大眾熟知。2015年6月,發(fā)行《前女友俱樂部》OST原...
    • 李丁
      李。篸ata-layout=&quot;right&quot; 星座:牧羊座血型:B型身高:171cm體重:44kg生日 :4月1日民族: 漢族學歷:大學本科
    • 馬繼紅
      馬繼紅,國家一級編劇。2020年10月18日,憑借《外交風云》獲第30屆中國電視金鷹獎最佳編劇獎。
    • 陳志雄
      陳志雄,1977年1月17日出生與福建晉江,演員。1998年,陳志雄被香港演員韓國材發(fā)掘涉足演藝圈,由DJ轉做演員。2000年出演首部電影《男親女愛》,飾演警官。2014年參演湖..
    名人推薦