基本內(nèi)容
1962年12月生于北京市。
于北京師范大學(xué)數(shù)學(xué)系獲碩士學(xué)位,中科院應(yīng)用數(shù)學(xué)研究所獲博士學(xué)位,研究員。
研究方向:
狄氏型與馬氏過程
隨機(jī)動(dòng)力系統(tǒng)
參加主持過的科研項(xiàng)目
2001.1-2003.12 國家自然科學(xué)基金面上基金(主持):隨機(jī)動(dòng)力系統(tǒng)
1998.1-2000.12 國家自然科學(xué)基金青年基金(合作):隨機(jī)分析及應(yīng)用
1997.1-1997.12 中國科學(xué)院青年基金(獨(dú)立承擔(dān))
研究方向:
狄氏型與馬氏過程
隨機(jī)動(dòng)力系統(tǒng)
部分已發(fā)表論文:
1. C. W. Li, Z. Dong (2003): On Kernel Estimations and Invariant Measures of Stochastic Jump Diffusions, Dynamics of Continuous, Discrete and Impulsive Systems, Ser.A math.Anal.10(2003), no.1-3 , 373--387.
2. W. Li, Z. Dong, R. Situ(2002): Almost sure stability of linear stochastic differential equations with jumps, Probability Theory and Related Fields,123 (2002),121--155.
3. Z. Dong (2000): Cr, p -Capacity associated with Hunt processes, Osaka J. Math.,
37(2000), 261--271.
4. Z. Dong (1997): Construction of Markov process with Markov resolvent on
Lp(E,m), Science in China(Series A), 40(9)(1997),898--908.
5. Z. Dong, Z. M. Ma(1993): An Integral Representation Theorem for Quasi
-Regular Dirichlet Spaces Sci. Bull. 38(15)(1993),1355--1358.
6. F. Z. Gong, Z. Dong (2000): The representation of positive functionals and the
characterization of zero capacity sets. (Chinese) J. Systems Sci. Math. Sci. 20 (2000), no. 2, 160--165.
7. Z. Dong, Z. F. Gong(2000):A note for ergodicity of general Markov processes.
(Chinese) Chinese J. Appl. Probab. Statist. 16 (2000), no. 1, 31--35.
8. Z. F. Gong, Z. Dong(1999): Embedding theorems for test functions and spaces
of distributions on locally convex spaces and their application. (Chinese) Acta Math. Sinica 42 (1999), no. 2, 335--342.
9. Z. Dong (1999): The construction of Markov process associated with Feller semigroup on general topological space. (Chinese) Pure Appl. Math. 15 (1999), no. 3, 33--37, 47.
10. Z. Dong (1998): Quasi-Regular topologies for Diriment forms on general measurable space, Acta Mathematicae Sinica, 14(1998), 683-690.
11. Z. Dong, Ma Zhiming, Sun Wei(1997): A note on Beurling-Deny formulae in
infinite dimensional spaces, Acta mathematicae applicatae Sinica, 13(4)(1997), 353-361.
12. Z. Dong, F. Z. Gong(1997):A necessary and sufficient condition for quasi-regularity of Dirichlet forms corresponding to resolvent kernels. (Chinese) Acta Math. Appl. Sinica 20 (1997), no. 3, 378--385.
13. Z. Dong (1997): A representation of capacity by first hitting time of an $m$-tight process on a general state space and its applications.(Chinese) Acta Math. Sci. (Chinese) 17 (1997), no. 3, 261--266.