人物經(jīng)歷
2003年于哈爾濱工業(yè)大學(xué)獲得本科學(xué)位,2009年于新加坡南洋理工大學(xué)(NanyangTechnological University)獲得博士學(xué)位。自2009年于鄭州大學(xué)電氣工程學(xué)院任教。
研究方向
演化計算的研究及應(yīng)用。
主要貢獻(xiàn)
主持國家自然科學(xué)基金優(yōu)秀青年科學(xué)基金項(xiàng)目一項(xiàng)、面上項(xiàng)目兩項(xiàng)、青年項(xiàng)目一項(xiàng)、中國博士后特別資助項(xiàng)目一項(xiàng)。
兼任IEEE Transactions on Evolutionary Computation, Swarm and Evolutionary Computation, Computational Intelligence Magazine Associate Editor,IEEE Transactions on Neural Networks、Computational Optimization and Applications 、Applied Mathematics and Computation、Neurocomputing、International Journal of Engineering, Science and Technology 、Mathematical Problems in Engineering等多個國際期刊評審專家,是多個國際會議組織委員會委員。
IEEE會員,IEEE計算智能協(xié)會會員,IEEE計算智能協(xié)會Emergent Technology Technical Committee成員,河南省青年科技工作者協(xié)會會長,河南省僑聯(lián)青年委員會副會長。
主要論著:
C. T. Yue, B. Y. Qu, K. J. Yu, J. J. Liang* and X. D. Li, “A novel scalable test problem suite for multimodal multiobjective optimization,” Swarm Evolutionary and Computation. vol. 48, pp. 62-71, 2019.
C. T. Yue, J. J. Liang*, B. Y. Qu, Y. H. Han, Y. S. Zhu and O. D. Crisalle, “A novel multiobjective optimization algorithm for sparse signal reconstruction,” Signal Processing, vol. 167: 107292, 2020.
K. J. Yu, B. Y. Qu, C. T. Yue, S. L. Ge, X. Chen and J. J. Liang*, “A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module”, Applied Energy, vol. 237, no. 2019, pp. 241-257.
Y. Hu, J. Wang, J. J. Liang*, K. J. Yu, H. Song, Q. Q. Guo, C. T. Yue and Y. L. Wang. “A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm,” SCIENCE CHINA Information Sciences, 62(5), pp. 070206:1-070206:17, 2019.
C. T. Yue, B. Y. Qu, and J. J. Liang*, “A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems”, IEEE Transactions on Evolutionary Computation, vol. 22, no. 5, pp. 805-817, 2018.
J. J. Liang, W. W. Xu, C. T. Yue, K. J. Yu, H. Song, O. C. Crisalle and B. Y. Qu, “Multimodal multiobjective optimization with differential evolution”, Swarm and Evolutionary Computation, vol. 44, pp. 1028-1059, 2018.
K. J. Yu, J. J. Liang*, B. Y. Qu, Z. P. Cheng and H. S. Wang, “Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models”, Applied Energy, vol. 226, no. 2018, pp. 408-422.
B. Y. Qu, Y. S. Zhu, Y. C. Jiao, M. Y. Wu, J. J. Liang*, P. N. Suganthan, “A Survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems”, Swarm and Evolutionary Computation, vol. 38, pp. 1-11, 2018.
B. Y. Qu, Q. Zhou, J. M. Xiao, J. J. Liang*, P. N. Suganthan, “Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods.” Mathematical Problems in Engineering, pp. 1-14, 2017.
K. J. Yu, J. J. Liang*, B. Y. Qu, X. Chen, and H. S. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm, Energy Conversion and Management, vol. 150, pp. 742-753, 2017.
B.Y. Qu, J. J. Liang*, Y.S. Zhu and P.N. Suganthan, “Solving dynamic economic emission dispatch problem considering wind power by multi-objective differential evolution with ensemble of selection method,” Natural Computing, pp. 1-9, 2017.
B.Y. Qu, J.J. Liang*, Y.S. Zhu, Z.Y. Wang and P.N. Suganthan, “Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm,” Information Sciences, vol. 351, pp. 48-66, 2016.
B. Y. Qu, B. F. Lang, J. J. Liang*, A. K. Qin and O. D. Crisalle, “Two-hidden-layer extreme learning machine for regression and classification,” Neurocomputing, vol. 175, pp. 826-834, 2016.
B. Y. Qu, J. J. Liang*, Z. Y. Wang, Q. Chen, P. N. Suganthan, “Novel benchmark functions for continuous multimodal optimization with comparative results,” Swarm and Evolutionary Computation, vol. 26, pp. 23-34, 2016.
J. J. Liang, B. Y. Qu, X. B. Mao, B. Niu, D.Y. Wang, “Differential evolution based on fitness euclidean-distance ratio for multimodal optimization, ” Neurocomputing, vol. 137, pp. 252-260, 2014.
B. Y. Qu, P. N. Suganthan and J. J. Liang, “Differential evolution with neighborhood mutation for multimodal optimization,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 601-614, 2012.
B. Y. Qu, J. J. Liang, P. N. Suganthan, “Niching particle swarm optimization with local search for multi-modal optimization,” Information Sciences, vol. 197, pp. 131-143, 2012 .
J. J. Liang, Q. K. Pan, T. J. Chen, L. Wang, “Solving the blocking flow shop scheduling problem by a dynamic multi-swarm particle swarm optimizer,”International Journal of Advanced Manufacturing Technology, vol. 55 (5-8), pp. 755-762, 2011.
J. J. Liang, C. C. Chan, P. N. Suganthan, V. L. Huang, “Wavelength detection in FBG sensor network using tree search DMS-PSO,”IEEE Photonics Technology Letters, vol. 18(12), pp. 1305 - 1307, 2006.
J. J. Liang, P. N. Suganthan, A. K. Qin, S. Baska, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol. 10(3), pp. 281 - 295 June 2006.
V. L. Huang, P. N. Suganthan, J. J. Liang, “Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems,” International Journal of Intelligent Systems, vol. 21, no. 2, pp. 209-226, 2006.
J. J. Liang, S. Baskar, P. N. Suganthan, A. K. Qin, “Performance evaluation of multiagent genetic algorithm,” Natural Computing, vol. 5, no. 1, pp. 83-96(14), 2006.
S. Baskar, A. Alphones, P. N. Suganthan, J. J. Liang, “Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation,” IEE Proceedings on Microwaves, Antenna and Propagation, vol. 152, no. 5, pp. 340-346,2005.
梁靜,劉睿,于坤杰,瞿博陽,求解大規(guī)模問題協(xié)同進(jìn)化動態(tài)粒子群優(yōu)化算法. 軟件學(xué)報, 2018(9): 2595-2605.
梁靜,郭倩倩,岳彩通,瞿博陽,自組織多目標(biāo)粒子群優(yōu)化算法,計算機(jī)應(yīng)用研究. 2019, 36 (8): 1-8.
梁靜,劉睿,瞿博陽,岳彩通,進(jìn)化算法在大規(guī)模優(yōu)化問題中的應(yīng)用綜述,鄭州大學(xué)學(xué)報(工學(xué)版),2018, 39(3): 15-21.
毛曉波, 梁靜, 黃俊杰,研究生“智能儀器與儀表”課程教改探索,電氣電子教學(xué)學(xué)報, 2012, 03: 50-51.
梁靜,周欽亞,瞿博陽,宋慧,基于混合策略的差分進(jìn)化算法,鄭州大學(xué)學(xué)報(工學(xué)版),2013, 34(5): 59-62.
梁靜,宋慧,瞿博陽,基于改進(jìn)粒子群算法的路徑優(yōu)化問題研究,鄭州大學(xué)學(xué)報(工學(xué)版), 2014, 35(1): 34-38.
梁靜,宋慧,王龍,瞿博陽,多目標(biāo)優(yōu)化在中央空調(diào)節(jié)能優(yōu)化系統(tǒng)中的應(yīng)用,計算機(jī)仿真,2015, 32(06): 302-307.
梁靜,瞿博陽,宋慧,劉巍,電業(yè)超短期負(fù)荷預(yù)測仿真研究,計算機(jī)仿真,2015, 32(07): 96-101.
瞿博陽,梁靜*,王忠勇,郭麗,模式識別雙語教學(xué)中學(xué)生科研素質(zhì)的提升,計算機(jī)教育2015, (12):1-3.