人物經(jīng)歷
1982年和1987年分別于湖南大學(xué)化學(xué)化工系獲學(xué)士和碩士學(xué)位。
1993年于清華大學(xué)材料系 獲博士學(xué)位,留校工作。
1995 ~ 1996年在蘇黎世瑞士聯(lián)邦理工大學(xué)做博士后研究。
1999 ~ 2000年在澳大利亞墨爾本Monash大學(xué)做高級(jí)訪問學(xué)者。
美國(guó)陶瓷學(xué)會(huì)會(huì)員。
中國(guó)機(jī)械工程學(xué)會(huì)工程陶瓷專業(yè)委員會(huì) 副理事長(zhǎng)。
研究方向
1、陶瓷材料和復(fù)雜形狀結(jié)構(gòu)陶瓷部件的精密成型理論與工藝。
2、高韌性高強(qiáng)度結(jié)構(gòu)陶瓷材料制備與快速燒結(jié)技術(shù)。
3 、低維納米陶瓷材料與陶瓷MEMS的制備。
4 、惰性生物陶瓷材料的制備。
學(xué)術(shù)與兼職
《美國(guó)陶瓷學(xué)會(huì)》會(huì)員,《中國(guó)機(jī)械工程學(xué)會(huì)工程陶瓷專業(yè)委員會(huì)》副理事長(zhǎng),《中國(guó)硅酸鹽學(xué)會(huì)工業(yè)陶瓷專業(yè)委員會(huì)》副主任;《陶瓷學(xué)報(bào)》、《中國(guó)陶瓷工業(yè)》《耐火材料》《現(xiàn)代技術(shù)陶瓷》編委,《中國(guó)陶瓷會(huì)刊》專家顧問委員。
研究領(lǐng)域
1、陶瓷燒結(jié)新技術(shù)與燒結(jié)理論研究
本研究目標(biāo)主要是發(fā)展新的燒結(jié)技術(shù)與理論。為了制備缺陷少的高性能陶瓷材料,燒結(jié)技術(shù)至關(guān)重要;未來燒結(jié)技術(shù)的重要方向是“外場(chǎng)與熱場(chǎng)耦合相結(jié)合的燒結(jié)”。近幾年來,本課題組在國(guó)際上率先研究振蕩壓力波與熱場(chǎng)耦合燒結(jié)新技術(shù),采用該技術(shù)制備的釔穩(wěn)定氧化鋯陶瓷(3Y-TZP),其密度接近理論密度、抗彎強(qiáng)度達(dá)到1600MPa;與傳統(tǒng)燒結(jié)方法比較,晶粒更加細(xì)小均勻、強(qiáng)度提高近一倍,并發(fā)現(xiàn)新的燒結(jié)機(jī)制,顯示出這種新型燒結(jié)技術(shù)的巨大潛力。目前研究重點(diǎn)包括振蕩燒結(jié)致密化機(jī)理、燒結(jié)動(dòng)力學(xué)窗口、多種超高強(qiáng)度陶瓷的振蕩燒結(jié)探索。前期部分工作已發(fā)表在J. Am.Ceram.Soc.等刊物;并得到主編高度評(píng)價(jià):“這種燒結(jié)技術(shù)過去從未聽說過,是對(duì)陶瓷科學(xué)的一個(gè)新貢獻(xiàn)”。
2、極端條件下陶瓷材料的結(jié)構(gòu)性能與服役行為研究
在航天、核能、超導(dǎo)等國(guó)家重大工程和許多高技術(shù)領(lǐng)域中,陶瓷材料的應(yīng)用涉及超低溫、熱沖擊、流體介質(zhì)腐蝕等極端環(huán)境。本課題組在國(guó)際上率先開展各種陶瓷材料(包括氧化物陶瓷、非氧化物陶瓷、陶瓷基復(fù)合材料)在超低溫液態(tài)環(huán)境下的抗彎強(qiáng)度、斷裂韌性與斷裂機(jī)理、裂紋擴(kuò)展路徑、靜態(tài)與動(dòng)態(tài)疲勞服役行為,熱膨脹與熱導(dǎo)率變化規(guī)律;發(fā)現(xiàn)和制備出77K低溫環(huán)境下斷裂強(qiáng)度和斷裂韌性比室溫下增大30%以上的陶瓷材料。上述工作已發(fā)表在Scripta Materialia,J. Am.Ceram.Soc., Ceramics International, Materials Letters等國(guó)際學(xué)術(shù)刊物,并得到美國(guó)陶瓷學(xué)會(huì)主編的高度評(píng)價(jià)。
3、陶瓷凈尺寸膠態(tài)成型工藝技術(shù)與理論研究
本研究目標(biāo)主要為提高陶瓷可靠性和產(chǎn)業(yè)化應(yīng)用提供理論指導(dǎo)。
主要包括:(1)陶瓷注射成型(Ceramic Injection Molding,簡(jiǎn)稱CIM),石蠟基體系的溶劑萃取脫脂及塑基體系的催化脫脂兩大工藝技術(shù),復(fù)雜形狀和高精度陶瓷零部件制備;(2)凝膠注模成型(Gel-Casting);(3)流延成型(Tape Casting);(4)3D打印光固化成型。上述研究涉及漿料流變性和固相含量調(diào)控、漿料凝固過程與計(jì)算機(jī)模擬優(yōu)化、脫脂與燒結(jié)過程及陶瓷材料內(nèi)部缺陷控制等工藝與理論。前期主要工作發(fā)表在J. Am. Ceram. Soc., Journal of the European Ceramic Society, Materials & Design, American Ceramic Society Bulletin, Materials Science and Engineering A等刊物,已授權(quán)十余項(xiàng)國(guó)家發(fā)明專利。
4、高強(qiáng)度高韌性陶瓷與制備工藝及材料缺陷關(guān)聯(lián)性研究
本研究主要是為下一代超高強(qiáng)度和超高韌性的新型陶瓷材料制備奠定基礎(chǔ)。
主要包括:(1)納米粉末及其多相復(fù)合體系的分散與團(tuán)聚體等缺陷調(diào)控;(2)納米陶瓷材料復(fù)合制備技術(shù);(3)陶瓷材料內(nèi)部缺陷的形成、遺傳規(guī)律及與不同成型工藝工藝的關(guān)聯(lián)性;(4)應(yīng)用新型燒結(jié)技術(shù)控制缺陷制備超高強(qiáng)度陶瓷;(5)高韌性及塑性陶瓷材料制備技術(shù)新探索。前期部分工作發(fā)表在J. Am. Ceram. Soc., Journal of the European Ceramic Society, Journal of Materials Science Letters等刊物,已授權(quán)多項(xiàng)國(guó)家發(fā)明專利。
5、透明陶瓷及陶瓷致色新技術(shù)
本研究主要包括:(1)透明氧化鋁陶瓷微量燒結(jié)添加劑的引入技術(shù);(2)透明陶瓷部件的注射成型技術(shù);(3)透明陶瓷的燒結(jié)技術(shù);(4)氧化鋯陶瓷的非均勻沉淀法及液相離子浸滲法致色技術(shù);(5)氧化鋯陶瓷的發(fā)黑技術(shù)。前期部分工作發(fā)表在J. Am. Ceram. Soc., Journal of the European Ceramic Society, International Journal of Applied Ceramic Technology, Science of Sintering, Advances in Applied Ceramics等刊物,已授權(quán)多項(xiàng)國(guó)家發(fā)明專利。
6、高純超細(xì)陶瓷粉末的化學(xué)反應(yīng)法合成研究
本研究目標(biāo)是為高性能陶瓷材料制備提供最佳的粉末及合成工藝方法。主要針對(duì)某些非氧化物和氧化物超細(xì)陶瓷粉末,研究其濕化學(xué)反應(yīng)法合成過程,調(diào)控粉末一次粒子的大小與分布,探索新的反應(yīng)合成技術(shù),制備出高純度、細(xì)晶粒、無團(tuán)聚、良好燒結(jié)活性的陶瓷粉末。
主要貢獻(xiàn)
正在研究的項(xiàng)目
1 、國(guó)家自然科學(xué)基金項(xiàng)目:聚合物前驅(qū)體制備納米陶瓷材料(項(xiàng)目負(fù)責(zé)人)。
2 、國(guó)家自然科學(xué)基金項(xiàng)目:結(jié)構(gòu)陶瓷材料的精密注射成型 (項(xiàng)目負(fù)責(zé)人)。
3 、國(guó)際合作與交流項(xiàng)目: SiCN 陶瓷 MEMS 的制備 (項(xiàng)目負(fù)責(zé)人)。
4 、教育部博士點(diǎn)基金: Si 3 N 4 /SiC 低維納米材料的制備 (項(xiàng)目負(fù)責(zé)人)。
5 、北京市科委項(xiàng)目:生物陶瓷預(yù)成根管樁制備及臨床應(yīng)用研究。
(與首都醫(yī)科大學(xué)的合作項(xiàng)目;項(xiàng)目第二負(fù)責(zé)人)。
論文和專利
1 、國(guó)際國(guó)內(nèi)學(xué)術(shù)刊物上發(fā)表論文130余篇,其中被國(guó)際權(quán)威科學(xué)引文索引( SCI )收錄98篇,同時(shí)被美國(guó)工程索引( EI )收錄60余篇。
2 、申請(qǐng)國(guó)家發(fā)明專利21項(xiàng),已授權(quán)15項(xiàng)。
榮譽(yù)記錄
1 、國(guó)家技術(shù)發(fā)明二等獎(jiǎng)1項(xiàng) ( 2004 年,排名第三)。2 、教育部科技進(jìn)步一等獎(jiǎng) 1 項(xiàng) ( 2003 年,排名第三)。3 、教育部科技成果鑒定 8 項(xiàng) (三項(xiàng)排名第一)。4 、清華之友-優(yōu)秀青年教師群體獎(jiǎng)1項(xiàng) ( 1997 年,排名第一 )。5 、 2004年中國(guó)科協(xié)期刊百篇優(yōu)秀學(xué)術(shù)論文獎(jiǎng)1篇。學(xué)術(shù)成果
【代表性論文】
[1] Z-P.Xie, S. Li, L-N. An;A novel Oscillatory Pressure-Assisted hot pressing for preparation of High-performance Ceramics,被選為“Featured Article”,Journal of the American Ceramic Society, 97[4] 1012-1015 (2014).
[2] S. Li, Z-P.Xie, W-J.Xue, X-D. Luo, L-N. An;Sintering of high-performance silicon nitride ceramics under vibratory pressure,Journal of the American Ceramic Society, 98[3] 698-701 (2015).
[3] S. Wei, Z-P. Xie, W-J. Xue, et al;Fracture toughness of aluminum nitride ceramics at cryogenic temperatures,Ceramics International; [40]13715-13718 (2014).
[4] S. Wei, J. Chen, Z-P. Xie, et al;How Does Crack Bridging Change at Cryogenic Temperatures?; Journal of the American Ceramic Society, 98[3] 898-901 (2015).
[5] W-W. Wu, Z-P. Xie, W-J. Xue, et al;Toughening effect of multiwall carbon nanotubes on 3Y-TZP zirconia ceramics at cryogenic temperatures,Ceramics International; [41]1303-1307 (2015).
[6] W. Liu, Z-P. Xie; Pressureless sintering behavior of injection molded alumina ceramics; Science of Sintering, 46: 3-13 (2014).
[7] J. Chen, Z-P.Xie; The cryogenic mechanical properties of translucent alumina; Ceramics International; [40]13691-13695 (2014).
[8] S. Wei, Z-P. Xie, W-J. Xue, et al;Strengthening mechanism of aluminum nitride ceramics from 293 to 77 K; Materials Letters; 119:32u201334 (2014).
[9] W. Liu, Z-P. Xie, L-X.Cheng; Sintering kinetics window: an approach to the densification process during the preparation of transparent alumina; Advances in Applied Ceramics; 114(1)33-38(2015).
[10] X-F. Yang, X-W. Xu, Z-P. Xie, et al; Optimization of the Compositions of PEG/PMMA Binder System in Ceramic Injection Moulding via Water-debinding; Advances in Applied Ceramics; 302:556-560(2013)
[11] W-J. Xue, J. Yi, Z-P. Xie; Fracture toughness of 3mol% yttria-stabilized zirconia at cryogenic temperatures; Ceramics International; 41[3] 3888 -3895 (2014).
[12] L-X. Cheng, Z-P. Xie, G-W. Liu; Spark plasma sintering of TiC-based composites toughened by submicron SiC particles; Ceramics International; 39: 5077u20135082 (2013).
[13] L-X. Cheng, Z-P. Xie, G-W. Liu; Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive; Journal of the European Ceramic Society ; 33: 2971u20132977 (2013).
[14]X-D. Luo, D-L. Qu, Z-P. Xie, et al; Effect of CeO2 on the Crystalline Structure of Forsterite Synthesized from Low-Grade Magnesite; Refractories and Industrial Ceramics, 54(4):291-294(2013).
[15] W-J. Xue, J. Yi, Z-P. Xie, et al; Enhanced fracture toughness of silicon nitride ceramics at cryogenic temperatures; Scripta Materialia; 66: 891-894 (2012).
[16] L-X. Cheng, G-W. Liu, Z-P. Xie, et al; Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition; Journal of the European Ceramic Society; 32:3399u20133406 (2012).
[17] W-J. Xue, Z-P. Xie, J. Yi, et al; Critical grain size and fracture toughness of 2 mol.% yttria-stabilized zirconia at ambient and cryogenic temperatures; Scripta Materialia; 67:963u2013966 (2012).
[18] W. Wang, W. Liu, Z-P. Xie; Fabrication of black-colored CuOu2013Al2O3u2013ZrO2 ceramics via heterogeneous nucleation method; Ceramics International; 38: 2851u20132856(2012).
[19] G-W. Liu, Z-P. Xie, W. Liu, et al; Fabrication of translucent alumina ceramics from pre-sintered bodies infiltrated with sintering additive precursor solutions; Journal of the European Ceramic Society; 32:711u2013715(2012)
[20] W. Liu, Z-P. Xie, C. JIa; Surface modification of ceramic powders by titanate coupling agent for injection molding using partially water soluble binder system; Journal of the European Ceramic Society; 32:1001u20131006(2012).
[21] W. Liu, X-F. Yang, Z-P. Xie; et al;Novel fabrication of injection-moulded ceramic parts with large section via partially water-debinding method; Journal of the European Ceramic Society; 32:2187u20132191 (2012)
[22] W-J. Xue, Y. Huang, Z-P. Xie, et al; Al2O3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties; Journal of the European Ceramic Society ; 32:3151u20133159(2012)
[23] Z-P.Xie, W-J,Xue, H-B. Chen; Mechanical of thermal properties of 99% and 92% alumina at cryogenic temperatures; Ceramics International ;37: 2165-2168 (2011).
[24] W-J,Xue, Z-P.Xie, G-W.Liu; R-curve behavior of 3Y-TZP at cryogenic temperatures. Journal of the American Ceramic Society; 94:2775-2778 (2011).
[25] W-J,Xue, Y. Sun, Z-P.Xie; Preparation and properties of porous alumina with highly ordered and unidirectional oriented pores by a self-organization process. Journal of the American Ceramic Society; 94:1978-1981 (2011).
[26] W-J,Xue,T. Ma, Z-P.Xie; Research into mechanical properties of reaction -bonded SiC composites at cryogenic temperatures. Materials Letters; 65: 3348 - 3350 (2011).
[27] G-W.Liu, Z-P. Xie, W. Wang, et al; Fabrication of colored zirconia ceramics by infiltrating water debound injetion molded green body; Advances in Applied Ceramics; 110(1) 58-62 (2011).
[28] G-W.Liu, Z-P. Xie, W. Wang, et al; Fabrication of ZrO2-CoAl2O4 composite by injection molding and solution infiltration. International Journal of Applied Ceramic Technology; 8(6) 1344u20131352(2011).
[29] G-W.Liu, Z-P. Xie, Y. Wu; Fabrication and mechanical properties of homogeneous ZTA ceramic via cyclic solution infiltration and in-situ precipitation. Materials & Design; 32(6), 3440-3447 (2011).
[30] W.Liu, Z-P.Xie, G-W. Liu, et al; Novel Preparation of Translucent Alumina Ceramics Induced by Doping Additives via Chemical Precipitation Method, Journal of the American Ceramic Society; 94(10) 3211-3215 (2011).
[31] W.Liu, Z-P.Xie,X-F.Yang, et al; Surface Modification Mechanism of Stearic Acid to Ceramic Powders Induced by Ball Milling for Water-Based Injection Molding; Journal of the American Ceramic Society; 94(5)1327-1330 (2011).
[32] W.Liu, Z-P.Xie, T-Z. Bo, et al; Injection molding of surface modified powders with high solid loadings: A case for fabrication of translucent alumina ceramics," Journal of the European Ceramic Society; 31(9)1611-17(2011).
[33] W.Liu, T-Z. Bo, Z-P.Xie, et al; Fabrication of injection moulded translucent alumina ceramics via pressureless sintering; Advances in Applied Ceramics; 110(4)251-54 (2011).
[34] X-N. Zhang, Y-G Chen, Z-P.Xie, et al; Shape and Doping Enhanced Field Emission Properties of Quasialigned 3C-SiC Nanowires; Journal of Physical Chemistry C; 114(18) 8251-8255(2010).
[35] Z-P.Xie, C-L. Ma, Y. Huang; Effects of additives on alumina sheets forming by a novel gel-tape-casting; Materials & Design, 24:287-291(2003).
[36] Z-P. Xie, J-W. Lu, Y. Huang: Ceramic forming based on gelation principle and process of sodium alginate; Materials Letters, 57:2501-2508(2003).
[37] Z-P.Xie, C-L. Ma, Y. Huang; Gel Tape Casting Ceramic Sheete; American Ceramic Society Bulletin; 81(10) 33-37(2002).
[38] Z-P.Xie, J-W. Lu, Y. Huang, et al; Fabrication of high toughness alumina with eloegated grains; Journal of Materials Science Letters, 20:1425-1427 (2001).
[39] Z-P. Xie, Y-B. Cheng, Y. Huang; Formation of silicon nitride bonded silicon carbide by aqueous gel-casting; Materials Science and Engineering A; 349:20-28(2003).