人物履歷
1993-2000年在徐州師范大學(xué)學(xué)習(xí),先后獲得理學(xué)學(xué)士、碩士學(xué)位;
2005年畢業(yè)于北京理工大學(xué),獲得理學(xué)博士學(xué)位并留校工作;
2006年由北京理工大學(xué)調(diào)入江蘇師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院工作;
2012年6-9月訪問美國德克薩斯大學(xué)泛美分校(UniversityofTexas-PanAmerican)和美國德州農(nóng)工大學(xué)(Texas A&M University);
2008.10-2009.3訪問澳大利亞新南威爾士大學(xué)(University of New South Wales)。
曾任江蘇師范大學(xué)教務(wù)處處長。
2018年10月—至今,任江蘇師范大學(xué)副校長。
任免信息
2018年10月7日,江蘇省委組織部發(fā)布省管領(lǐng)導(dǎo)干部任職前公示:杜增吉擬任本科院校副職,試用期一年。
2018年10月30日,江蘇省人民政府經(jīng)研究決定:任命杜增吉為江蘇師范大學(xué)副校長,試用期一年。
研究領(lǐng)域
研究方向?yàn)槌N⒎址匠膛c動力系統(tǒng)、奇異攝動理論及其應(yīng)用等。
論著論文
發(fā)表SCI論文40多篇。
1. 周明儒,杜增吉,王廣瓦著,奇異攝動中的微分不等式理論(奇異攝動叢書3),科學(xué)出版社,2012年
2.Zengji Du, Zhaosheng Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, Journal of Computational and Applied Mathematics, 2014, 258: 87-98
3. Zengji Du, Dandan Wei, Ying Xu, Solitary wave solutions for a generalized KdV-mKdV equation with distributed delays, Nonlinear Analysis: Modelling and Control,2014,19(4) 551-564
4. Zengji Du, Min Xu, Positive periodic solutions of N-species neutral delayed Lotka-Volterra competition system with impulsive perturbations, Applied Mathematics and Computation, 2014,243:379-391
5. Zengji Du, Xiao Chen, Zhaosheng Feng, Multiple Positive Periodic Solutions to A Predator-Prey Model with Leslie-Gower Holling-type II Functional Response and Harvesting Terms, Discrete and Continuous Dynamical Systems-S,2014, 7(6):1203-1214.
6. Zengji Du,Yansen Lv, Permanence and Almost Periodic Solution of a Lotka-Volterra Model with mutual interference and time delays, Applied Mathematical Modelling, 2013,37: 1054-1068
7. Yansen Lv, Zengji Du, Existence and Global Attractivity of Positive Periodic Solution to a Lotka-Volterra Model with mutual interference and Holling III type functional response, Nonlinear Analysis: Real World Applications, 2011,12: 3654-3366
8. XiaojieLin, Zengji Du, Fanchao Meng, A note on a third-order multi-point boundary value problem at resonance, Mathematische Nachrichten, 2011,284(13): 1690-1700
9. Xiaoli Wang, Zengji Du, Existence and Global Attractivity of Positive Periodic Solution to a Lotka-Volterra Model, Nonlinear Analysis: Real World Applications,2010,11: 4054-4061
10. Zengji Du, Lingju Kong, Asymptotic Solutions of a Singularly PerturbedSecond-OrderDifferential Equations and ApplicationtoMulti Point Boundary Value Problems, Applied Mathematics Letters, 23 (2010) 980-983
11. Zengji Du, Lingju Kong, Existence of solutions for systems of multi-point boundary value problems, Electronic Journal of Qualitative , Theory of Differential Equations 2009,No. 10:1-17
12. Zengji Du, Solvability ofFunctional Differential Equationswith Multi-point Boundary Value Problemat Resonance, Computers and Mathematics with Applications, 2008,55(11): 2653-2661.
13. Zengji Du, Dexiang Ma, Xiaojie Lin, A Higher Order Multi-Point Boundary Value Problem in the Resonance case, Differential Equations, 2007, 43(4):445-453.
14. Zhanbing Bai, Zengji Du, Positive solutions for some second-order four-point boundary value problems, Journal of Mathematical Analysis and Applications,2007,330(1): 34-50.
15. Zengji Du, Xiaojie Lin, Multiple Solutions to a Three-PointBoundary Value Problemfor Higher-Order Ordinary Differential Equations, Journal of Mathematical Analysis and Applications, 2007,335:1207-12
16 Zengji Du, Singular Perturbation for Third-Order Nonlinear Systems of Boundary Value Problem, Applied Mathematics and Computation,2007,189: 869-877
17. Zengji Du, XiaojieLin, Weigao Ge, Nonlocal Boundary Value Problem of Higher Order Ordinary Differential equations at Resonance, Rocky Mountain J. of Mathematics, 36 (5), 2006: 1471-1486
18. Zengji Du, Fubao Zhang and Weigao Ge, Positive solutions for higher- order B boundary value problem with sign changing nonlinear terms, Differential Equations and Dynamical Systems,2006,14(3-4):239-253;
19.Dexiang Ma, Zengji Du, Weigao Ge,Existence and interation of monotone positive solutions for multi-point boundary value problems with p-Laplacian operator, Computers & Mathematics with Applications, 50 (2005): 729-739
20. Zengji Du, Xiaojie Lin, Weigao Ge, On a third order multi- point boundary value problem at resonance, Journal of Mathematical Analysis and Applications, 302(1),(2005):217-229
21. Zengji Du, Weigao Ge, Multiple solutions for three-point boundary value problem with Nnonlinear terms depending on the first order derivative, Arch. Math.,84 (2005) 341u2013349
22. Zengji Du, Guolan Cai and Weigao Ge, A class of third order multi-point boundary value problem, Taiwanese Journal of Mathematics,2005,9(1): 81-94
23. Zengji Du, Xiaojie Lin and Weigao Ge, Some higher order multi-point boundary value problem at resonance, Journal of Computational and Applied Mathematics,2005,177(1): 55-65
24. Zengji Du, Weigao Ge and Mingru Zhou, Singular perturbations for third-order nonlinear multi-point boundary value problem, Journal of Differential Equations, 2005, 218 (1): 69-90.
25. Zengji Du, Weigao Ge and Xiaojie Lin, Existence of solutions for a class of third-order nonlinear boundary value problems, Journal of Mathematical Analysis and Applications, 2004, 294(1): 104-112