欧美在线一级ⅤA免费观看,好吊妞国产欧美日韩观看,日本韩国亚洲综合日韩欧美国产,日本免费A在线

    <menu id="gdpeu"></menu>

  • 約翰尼斯·迪德里克·范·德·瓦耳斯

    約翰尼斯·迪德里克·范·德·瓦耳斯

    約翰尼斯·迪德里克·范·德·瓦耳斯(Johannes van der Waals)  出生 1837年11月23日   荷蘭萊頓   逝世 1923年3月8日   荷蘭阿姆斯特丹   研究領(lǐng)域 物理學(xué)家   著名成就 分子力  國(guó)籍:荷蘭...

    基本內(nèi)容

    約翰尼斯·迪德里克·范·德·瓦耳斯(Johannes van der Waals)

      出生 1837年11月23日

      荷蘭萊頓

      逝世 1923年3月8日

      荷蘭阿姆斯特丹

      研究領(lǐng)域 物理學(xué)家

    約翰尼斯·迪德里克·范·德·瓦耳斯

      著名成就 分子力

      國(guó)籍:荷蘭

      研究機(jī)構(gòu):阿姆斯特丹大學(xué)

      母校:萊頓大學(xué)

      導(dǎo)師:彼得·賴(lài)克

      學(xué)生:迪德里克·科特韋格

      榮譽(yù):諾貝爾物理學(xué)獎(jiǎng)(1910年)

      約翰尼斯·迪德里克·范·德·瓦耳斯(通常稱(chēng)為范德瓦耳斯或范德華,Johannes Diderik van der Waals,1837年-1923年),荷蘭物理學(xué)家,曾任阿姆斯特丹大學(xué)教授。對(duì)氣體和液體的狀態(tài)方程所作的工作。獲得1910年諾貝爾物理學(xué)獎(jiǎng);瘜W(xué)中有以他名字命名的范德華力。

      Johannes Diderik van der Waals was born on November 23, 1837 in Leyden, The Netherlands, the son of Jacobus van der Waals and Elisabeth van den Burg. After having finished elementary education at his birthplace he became a schoolteacher. Although he had no knowledge of classical languages, and thus was not allowed to take academic examinations, he continued studying at Leyden University in his spare time during 1862-65. In this way he also obtained teaching certificates in mathematics and physics.

      In 1864 he was appointed teacher at a secondary school at Deventer; in 1866 he moved to The Hague, first as teacher and later as Director of one of the secondary schools in that town.

      New legislation whereby university students in science were exempted from the conditions concerning prior classical education enabled Van der Waals to sit for university examinations. In 1873 he obtained his doctor’s degree for a thesis entitled Over de Continuïteit van den Gas - en Vloeistoftoestand (On the continuity of the gas and liquid state), which put him at once in the foremost rank of physicists. In this thesis he put forward an "Equation of State" embracing both the gaseous and the liquid state; he could demonstrate that these two states of aggregation not only merge into each other in a continuous manner, but that they are in fact of the same nature. The importance of this conclusion from Van der Waals’ very first paper can be judged from the remarks made by James Clerk Maxwell in Nature, "that there can be no doubt that the name of Van der Waals will soon be among the foremost in molecular science" and "It has certainly directed the attention of more than one inquirer to the study of the Low-Dutch language in which it is written" (Maxwell probably meant to say "Low-German", which would also be incorrect, since Dutch is a language in its own right). Subsequently, numerous papers on this and related subjects were published in the Proceedings of the Royal Netherlands Academy of Sciences and in the Archives Néerlandaises, and they were also translated into other languages.

      When, in 1876, the new Law on Higher Education was established which promoted the old Athenaeum Illustre of Amsterdam to university status, Van der Waals was appointed the first Professor of Physics. Together with Van’t Hoff and Hugo de Vries, the geneticist, he contributed to the fame of the University, and remained faithful to it until his retirement, in spite of enticing invitations from elsewhere.

      The immediate cause of Van der Waals’ interest in the subject of his thesis was R. Clausius’ treatise considering heat as a phenomenon of motion, which led him to look for an explanation for T. Andrews’ experiments (1869) revealing the existence of "critical temperatures " in gases. It was Van der Waals’ genius that made him see the necessity of taking into account the volumes of molecules and the intermolecular forces ("Van der Waals forces", as they are now generally called) in establishing the relationship between the pressure, volume and temperature of gases and liquids.

      A second great discovery - arrived at after much arduous work - was published in 1880, when he enunciated the Law of Corresponding States. This showed that if pressure is expressed as a simple function of the critical pressure, volume as one of the critical volume, and temperature as one of the critical temperature, a general form of the equation of state is obtained which is applicable to all substances, since the three constants a, b, and R in the equation, which can be expressed in the critical quantities of a particular substance, will disappear. It was this law which served as a guide during experiments which ultimately led to the liquefaction of hydrogen by J. Dewar in 1898 and of helium by H. Kamerlingh Onnes in 1908. The latter, who in 1913 received the Nobel Prize for his low-temperature studies and his production of liquid helium, wrote in 1910 "that Van der Waals’ studies have always been considered as a magic wand for carrying out experiments and that the Cryogenic Laboratory at Leyden has developed under the influence of his theories ".

      Ten years later, in 1890, the first treatise on the "Theory of Binary Solutions" appeared in the Archives Néerlandaises - another great achievement of Van der Waals. By relating his equation of state with the Second Law of Thermodynamics, in the form first proposed by W. Gibbs in his treatises on the equilibrium of heterogeneous substances, he was able to arrive at a graphical representation of his mathematical formulations in the form of a surface which he called "Psi-surface" in honour of Gibbs, who had chosen the Greek letter Psi as a symbol for the free energy, which he realised was significant for the equilibrium. The theory of binary mixtures gave rise to numerous series of experiments, one of the first being carried out by J. P. Kuenen, who found characteristics of critical phenomena fully predictable by the theory. Lectures on this subject were subsequently assembled in the Lehrbuch der Thermodynamik (Textbook of thermodynamics) by Van der Waals and Ph. Kohnstamm.

      Mention should also be made of Van der Waals’ thermodynamic theory of capillarity, which in its basic form first appeared in 1893. In this, he accepted the existence of a gradual, though very rapid, change of density at the boundary layer between liquid and vapour - a view which differed from that of Gibbs, who assumed a sudden transition of the density of the fluid into that of the vapour. In contrast to Laplace, who had earlier formed a theory on these phenomena, Van der Waals also held the view that the molecules are in permanent, rapid motion. Experiments with regard to phenomena in the vicinity of the critical temperature decided in favour of Van der Waals’ concepts.

      Van der Waals was the recipient of numerous honours and distinctions, of which the following should be particularly mentioned. He received an honorary doctorate of the University of Cambridge; was made honorary member of the Imperial Society of Naturalists of Moscow, the Royal Irish Academy and the American Philosophical Society; corresponding member of the Institut de France and the Royal Academy of Sciences of Berlin; associate member of the Royal Academy of Sciences of Belgium; and foreign member of the Chemical Society of London, the National Academy of Sciences of the U.S.A., and of the Accademia dei Lincei of Rome.

      In 1864, Van der Waals married Anna Magdalena Smit, who died early. He never married again. They had three daughters and one son. The daughters were Anne Madeleine who, after her mother’s early death, ran the house and looked after her father; Jacqueline Elisabeth, who was a teacher of history and a well-known poetess; and Johanna Diderica, who was a teacher of English. The son, Johannes Diderik Jr., was Professor of Physics at Groningen University 1903-08, and subsequently succeeded his father in the Physics Chair of the University of Amsterdam.

      Van der Waals’ main recreations were walking, particularly in the country, and reading. He died in Amsterdam on March 8, 1923.

      From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

      This autobiography/biography was first published in the book series Les Prix Nobel. It was later edited and republished in Nobel Lectures. To cite this document, always state the source as shown above

    TAGS: 人物
    名人推薦
    • 迪利維奧
      安杰洛·迪利維奧(Angelo Di Livio),1966年7月26日生,意大利足球運(yùn)動(dòng)員。司職中場(chǎng),曾經(jīng)效力過(guò)意大利足球甲級(jí)聯(lián)賽的帕多瓦足球俱樂(lè)部。這...
    • 絢香
      絢香(1987年12月18日-),原名飯?zhí)锝k香,是一名日本流行音樂(lè)女歌手,出生于大阪府守口市。前唱片公司公司為日本華納音樂(lè)——Warner Music (Japan)...
    • 恩里科·奧馬爾·西沃里
      恩里科·奧馬爾·西沃里(Enrique Omar Sívori),1935年10月2日-2005年2月17日。出生于阿根廷圣尼古拉斯,意大利/阿根廷足球運(yùn)...
    • 羊毛衫樂(lè)隊(duì)
      The Cardigans/羊毛衫合唱團(tuán),來(lái)自瑞典,成立于’92年底與其他樂(lè)隊(duì)不同的是,他們的音樂(lè)取材于Pop,拉丁,爵士和搖滾。女主唱Nina Persson嗓音清新...
    • 托尼·亞當(dāng)斯
      托尼·亞當(dāng)斯(Tony Adams),1966年10月10日出生于英格蘭Romford,英格蘭足球運(yùn)動(dòng)員,司職后衛(wèi)。托尼·亞當(dāng)斯是英格蘭足壇一位偉大的...
    • 古力特
      古力特,全名路德·古力特(Ruud Gullit,1962年9月1日-),是一名已退役荷蘭足球運(yùn)動(dòng)員及現(xiàn)任足球主教練,是1987年歐洲足球先生和1987年、1...
    名人推薦