個人經(jīng)歷
2008.09-2010.07,內(nèi)蒙古大學(xué)應(yīng)用數(shù)學(xué)專業(yè),攻讀博士學(xué)位
2005.09-2008.07,內(nèi)蒙古大學(xué)應(yīng)用數(shù)學(xué)專業(yè),攻讀碩士學(xué)位
2001.09-2005.07,內(nèi)蒙古大學(xué)數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè),攻讀學(xué)士學(xué)位
主講課程
《高等數(shù)學(xué)A》、《高等數(shù)學(xué)B》《線性代數(shù)》
學(xué)術(shù)論文
[1] D. S. Cvetkovi?-Ili?, G. Hai, A. Chen. Some results of boundedness blew and Fredholmness of upper triangular operator matrices, J. Math. Anal. Appl.,2015, 425: 1071u20131082.
[2] G. Li, G. Hai, A. Chen. Generalized Weyl spectrum of upper triangular operator matrices, Mediterranean Journal of Mathematics, 2015, 12(3): 1059-1067.
[3] G. Hai , A. Chen. The residual spectrum and the continuous spectrum of upper triangular operator matrices, Filomat, 2014, 28(1): 65-71.
[4] G. Hai , A. Chen. On the invertibility of upper triangular operator matrices, Linear & Multilinear Algebra, 2014, 62(4): 538-547.
[5] G. Hai, A. Chen. Consistent invertibility of upper triangular operator matrices, Linear Algebra and its Applications, 2014, 455(1):22u201331, 2014.
[6] G. Hai , A. Chen. Invertibility of operator matrices on a Banach space, Complex Anal. Oper. Theory, 2013, 7: 1807-1818.
[7] A. Chen, G. Hai. Perturbations of the right and left spectra for operator matrices, J. Operator Theory, 2012, 67(1):207-214.
[8] Alatancang, G. Hou, G. Hai. Perturbation of spectra for a class of 2×2 operator matrices, Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(4): 711u2013720.
[9] G. Hai , A. Chen. On the right (left) invertible completions for operator matrices, Integr. Equ. Oper. Theory, 2010, 67(1): 79u201393.
[10] G. Hai , A. Chen. The semi-Fredholmness of 2*2 operator matrices, J. Math. Anal. Appl. 2009, 352 (2) : 733u2013738.
[11] Hai G., Alatancang. Possible spectrums of 3×3 upper triangular operator matrices. Journal of Mathematical Research & Exposition, 2009, 29(4): 649u2013661.
[12] 海國君, 阿拉坦倉. 2*2階上三角型算子矩陣的Moore-Penrose譜,系統(tǒng)科學(xué)與數(shù)學(xué), 2009, 29(7): 962-970.
[13] 阿拉坦倉,海國君,一類無窮維Hamilton算子的本質(zhì)譜及其應(yīng)用,數(shù)學(xué)物理學(xué)報,2013,33A(5):984-992
[14] 海國君, 阿拉坦倉.上三角算子矩陣的(a,b)-本質(zhì)譜,數(shù)學(xué)學(xué)報,2014, 57(3): 569-580
[15] 海國君, 阿拉坦倉,無窮維Hamilton算子的近似點(diǎn)譜,應(yīng)用數(shù)學(xué)學(xué)報,2016, 39(5): 669-676.
[16] 海國君,阿拉坦倉,某類無窮維Hamilton算子的Moore-Penrose可逆性,數(shù)學(xué)雜志,2015年12月網(wǎng)絡(luò)出版.
科研項(xiàng)目
主持完成國家自然科學(xué)基金數(shù)學(xué)天元基金、內(nèi)蒙古自治區(qū)自然科學(xué)基金面上項(xiàng)目、內(nèi)蒙古自治區(qū)高等院?茖W(xué)技術(shù)研究項(xiàng)目重點(diǎn)項(xiàng)目、內(nèi)蒙古大學(xué)高層次人才引進(jìn)項(xiàng)目各1項(xiàng)。主持內(nèi)蒙古自治區(qū)自然科學(xué)基金面上項(xiàng)目1項(xiàng)。