喬丕忠 - 學(xué)術(shù)任職
喬丕忠于1993年獲美國佛羅里達(dá)大西洋大學(xué)土木暨海洋工程碩士學(xué)位,1997年獲美國西弗吉尼亞大學(xué)土木工程博士學(xué)位。華盛頓州立大學(xué)土木及環(huán)境工程系教授、和美國集成智能結(jié)構(gòu)公司的創(chuàng)始人。美國注冊職業(yè)工程師(Professional Engineer)和美國注冊協(xié)會(huì)公證的結(jié)構(gòu)工程師。美國土木工程協(xié)會(huì)(ASCE)會(huì)士(Fellow);現(xiàn)任ASCE高等材料和結(jié)構(gòu)委員會(huì)主席和工程力學(xué)部穩(wěn)定委員會(huì)主席;ASCE航空工程學(xué)報(bào)(Journal of Aerospace Engineering)特邀主編、“結(jié)構(gòu)健康監(jiān)測”國際學(xué)報(bào)(Structural Health Monitoring, An International Journal)副主編、ASCE工程力學(xué)學(xué)報(bào)(Journal of Engineering Mechanics)副主編、ASCE航空工程學(xué)報(bào)(Journal of Aerospace Engineering)副主編;還是高等材料(Journal of Advanced Materials)及災(zāi)變進(jìn)展(Disaster Advances)等國際期刊的編委;現(xiàn)為ASCE航空部五名執(zhí)行委員(Executive Committee)之一。
喬丕忠 - 研究方向
喬丕忠于1997年獲美國西弗吉尼亞大學(xué)土木工程(高等材料、結(jié)構(gòu)和力學(xué))博士學(xué)位,主要研究復(fù)合材料和智能材料的力學(xué)特性,本構(gòu)關(guān)系,應(yīng)用力學(xué)及分析力學(xué),復(fù)合材料加強(qiáng)的混凝土的非線性分析,結(jié)構(gòu)健康監(jiān)測、結(jié)構(gòu)優(yōu)化、以及高性能材料在結(jié)構(gòu)中的應(yīng)用等領(lǐng)域。喬丕忠博士承擔(dān)美國國家科學(xué)基金(NSF)、美國科學(xué)院(NAS)、美國聯(lián)邦公路局(USDOT/FHWA)、美國航空航天局(NASA)、美國空軍科學(xué)研究辦公(AFOSR)室、波音公司(Boeing)等二十幾項(xiàng)科研項(xiàng)目。
首次提出了雙層梁剪切變形[1]和界面變形[2]理論[3];創(chuàng)建了由離散板理論所得到的結(jié)構(gòu)局部穩(wěn)定顯式解,已成功應(yīng)用于美國航空業(yè)的結(jié)構(gòu)分析[4-6];研究了用智能材料進(jìn)行結(jié)構(gòu)健康監(jiān)測的關(guān)鍵基礎(chǔ)問題并發(fā)展了破壞檢測新理論與方法[7-9];提出了幾種破壞模型,提升了復(fù)合材料對傳統(tǒng)結(jié)構(gòu)加固和修復(fù)的理論研究水平[10-13];建立了超高階夾層結(jié)構(gòu)受沖擊理論,提高了結(jié)構(gòu)沖擊和防護(hù)分析精度[14-15];通過均勻性理論,求解各種空心結(jié)構(gòu)材料的性能屬性[16-17];結(jié)合試驗(yàn)方法和現(xiàn)象,給出了結(jié)構(gòu)損傷進(jìn)展演化規(guī)律,發(fā)展了通用疲勞和概率破壞模型[18]等。共主持包括3項(xiàng)美國國家科學(xué)基金在內(nèi)的20多項(xiàng)科研項(xiàng)目。
其學(xué)術(shù)期刊論文已“被SCI收錄有110多篇;被SCI引用有1,000多篇次(h-index=18);被EI收錄140多篇”。獲美國土木工程協(xié)會(huì)(ASCE)Journal of Composites for Construction首屆最佳研究論文獎(jiǎng)和2007年美國土木工程學(xué)會(huì)(ASCE)航空部“杰出科技貢獻(xiàn)獎(jiǎng)”等。
喬丕忠 - 引用文獻(xiàn)
雙層梁界面斷裂力學(xué):
[1] Wang, JL and Qiao PZ (喬丕忠),(2004) .“Interface Crack between Two Shear Deformable Elastic Layers,” Journal of the Mechanics and Physics of Solids, 52(4): 891-905. (雙層梁剪切變形理論)
[2] Qiao, PZ (喬丕忠) and Wang, JL, (2004). “Mechanics and Fracture of Crack-tip Deformable Bi-material Interface,” International Journal of Solids and Structures, 41(26): 7423-7444). (雙層梁界面變形理論)
[3] Qiao, PZ (喬丕忠) and Wang, JL, (2005). “Novel Joint Deformation Models and their Application to Delamination Fracture Analysis,” Composites Science and Technology, 65(11-12): 1826-1839. (雙層梁界面斷裂力學(xué)的應(yīng)用)
離散板理論和結(jié)構(gòu)局部穩(wěn)定顯式解:
[4] Qiao, PZ (喬丕忠) and Zou, GP,(2002). “Local Buckling of Elastically Restrained Fiber-Reinforced Plastic Plates and its Applications to Box-Sections,” Journal of Engineering Mechanics, ASCE, 128 (12): 1324-1330. (離散板理論)
[5] Qiao, PZ (喬丕忠) and Zou, GP (2003). “Local Buckling of Composite Fiber-Reinforced Plastic Wide-Flange Sections,” Journal of Structural Engineering, ASCE, 129(1): 125-129. (離散板理論)
[6] Qiao, PZ (喬丕忠) and Shan, LY, (2005). “Explicit Local Buckling Analysis and Design of Fiber-reinforced Plastic Composite Structural Shapes,” Composite Structures, 70(4): 468-483. (離散板理論對求結(jié)構(gòu)型材局部穩(wěn)定顯式解的應(yīng)用)
破壞檢測新理論與方法:
[7] Qiao, PZ (喬丕忠) and Cao, MS (2008). “Waveform Fractal Dimension for Mode Shape-based Damage Identification of Beam-type Structures,” International Journal of Solids and Structures, 45(22-23): 5946-5961. (波形分形理論)
[8] Cao, MS and Qiao, PZ (喬丕忠) (2008). “Integrated Wavelet Transform and its Application to Vibration Mode Shapes for Damage Detection of Beam-type Structures,” Smart Materials and Structures, 17(5) 055014(17pp) (集成小波轉(zhuǎn)換理論)
[9] Fan, W. and Qiao, PZ (喬丕忠) (2009). “A 2-D Continuous Wavelet Transform of Mode Shape Data for Damage Detection of Plate Structures,” International Journal of Solids and Structures, 46(25-26): 4379-4395. (二維小波連續(xù)轉(zhuǎn)換理論)
破壞試驗(yàn)?zāi)P停?/strong>
[10] Davalos, JF, Madabhusi-Raman, P, and Qiao, PZ (喬丕忠) (1997). “Characterization of mode-I fracture of hybrid material interface bonds by the contoured DCB specimen,” Engineering Fracture Mechanics, 58(3): 173-192. (I型試驗(yàn)斷裂模型)
[11] Qiao, PZ (喬丕忠), Wang, JL, and Davalos, JF (2003). “Tapered Beam on Elastic Foundation Model for Compliance Rate Change of TDCB specimen,” Engineering Fracture Mechanics, 70(2): 339-353. (I型試驗(yàn)斷裂模型)
[12] Qiao, PZ (喬丕忠), Wang, JL, and Davalos, JF (2003). “Analysis of Tapered ENF Specimen and Characterization of Bonded Interface Fracture under Mode-II Loading,” International Journal of Solids and Structures, 40(8): 1865-1884. (II型試驗(yàn)斷裂模型)
[13] Wang, JL and Qiao, PZ (喬丕忠) (2004). “Novel Beam Analysis of End-Notched Flexure Specimen for Mode-II Fracture,” Engineering Fracture Mechanics, 71(2): 219-231. (II型斷裂模型)
結(jié)構(gòu)沖擊和防護(hù):
[14] Yang, MJ and Qiao, PZ (喬丕忠) (2005). “Higher-order Impact Modeling of Sandwich Beams with Flexible Core,” International Journal of Solids and Structures, 42(20): 5460-5490. (超高階夾層結(jié)構(gòu)受沖擊理論)
[15] Yang, MJ and Qiao, PZ (喬丕忠) (2010). “Analysis of Cushion Systems for Impact Projection Design of Bridges against Overheight Vehicle Collision,” International Journal of Impact Engineering, 37(12): 1219-1227. (結(jié)構(gòu)沖擊和防護(hù)分析方法)
材料均勻化分析和理論:
[16] Xu, XF, Qiao, PZ (喬丕忠), and Davalos, JF. (2001). “On the Transverse Shear Stiffness of Composite Honeycomb Core with General Configuration,” Journal of Engineering Mechanics, ASCE, 127(11): 1144-1151. (蜂窩夾心體的橫向剪切模量)
[17] Xu, XF and Qiao, PZ (喬丕忠) (2002). “Homogenized Elastic Properties of Honeycomb Sandwich with Skin Effect,” International Journal of Solids and Structures, 39(8): 2153-2188. (蜂窩三層板的均勻化模量)
材料疲勞通用試驗(yàn)方法:
[18] Qiao, PZ (喬丕忠) and Yang, MJ (2006). “Fatigue Life Prediction of Pultruded E-glass/Polyurethane Composites,” Journal of Composite Materials, 40(9): 815-837. (復(fù)合材料疲勞壽命預(yù)測)