個(gè)人簡(jiǎn)介
孫笑濤是國(guó)內(nèi)知名的代數(shù)幾何學(xué)家,F(xiàn)任中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院研究員。畢業(yè)于湖南師范大學(xué)。
他曾經(jīng)和談勝利、陳猛、蔡金星等人師從著名代數(shù)幾何家肖剛 (華東師范大學(xué)數(shù)學(xué)系), 后留學(xué)海外深造。
他是數(shù)學(xué)院國(guó)家杰出青年基金獲得者。
孫笑濤在代數(shù)幾何研究中取得重要進(jìn)展,首次揭示了向量叢的穩(wěn)定性和弗羅賓尼斯(Frobenius)同態(tài)兩者之間的深刻聯(lián)系,具有十分重要的理論意義和價(jià)值。向量叢的穩(wěn)定性是代數(shù)幾何中非;镜母拍,在數(shù)學(xué)各領(lǐng)域都有重要應(yīng)用。這一基本概念曾吸引過(guò)眾多國(guó)際知名數(shù)學(xué)家的研究,包括多位菲爾茲獎(jiǎng)(Fields)得主, 如芒福德(Mumford)、唐納森(Donaldson)、丘成桐等人。弗羅賓尼斯同態(tài)則是特征p域上代數(shù)幾何中最重要的研究對(duì)象。
孫笑濤研究員的相關(guān)研究成果《向量叢在弗羅賓尼斯同態(tài)下的正向像》(Direct Images of Bundles under Frobenius Morphism)于2008年4月在國(guó)際著名數(shù)學(xué)刊物《數(shù)學(xué)新進(jìn)展》(Inventiones Mathematicae)正式發(fā)表,該刊物被公認(rèn)為是國(guó)際上最頂尖的幾個(gè)綜合性數(shù)學(xué)刊物之一。
孫笑濤研究員的《?臻g退化和向量叢的穩(wěn)定性》項(xiàng)目獲得2012年度國(guó)家自然科學(xué)獎(jiǎng)二等獎(jiǎng)。
研究方向:
代數(shù)幾何
基金和獎(jiǎng)勵(lì):
2008年數(shù)學(xué)與系統(tǒng)科學(xué)研究院突出研究成果獎(jiǎng)。
2002年度和2003年度香港RGC基金。
2000年度國(guó)家杰出青年基金。國(guó)家973項(xiàng)目代數(shù)幾何組成員。
1992年中國(guó)科學(xué)院院長(zhǎng)獎(jiǎng)學(xué)金優(yōu)秀獎(jiǎng)(博士)。
已發(fā)表的論文:
Surfaces of general type with canonical pencil, Acta Math. Sinica 33,(1990), no. 6, 769-773.
A note on factorization of birational morphisms, Acta Math. Sinica 34,(1991), no. 6, 749-753.
Algebraic surfaces whose canonical image has a pencil of rational curves of degree two, Math. Z. 209 (1992), no. 1, 67-74.
On canonical fibrations of algebraic surfaces , Manuscripta Math. 83(1994 ), no. 2, 161-169.
Birational morphisms of regular schemes , Compositio Math. 91(1994), no. 3, 325-339.
A regularity theorem on birational morphisms,J. Algebra 178(1995), no. 3, 919-927.
On relative canonical sheaves of arithmetic surfaces, Math. Z. 223 (1996), no. 4, 709-723.
Ramifications on arithmetic schemes, J. Reine Angew. Math. 488 (1997), 37-54.
(with R. Huebl) On the cohomology of regular differential forms and dualizing sheaves, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1931-1940.
(with R. Huebl) Vector bundles on the projective line over a discrete valuation ring and the cohomology of canonical sheaves,Comm. Algebra 27 (1999), no. 7, 3513-3529.
Remarks on semistability of G-bundles in positive characteristic,Compositio Math. 119 (1999), no. 1, 41-52.
Degeneration of moduli spaces and generalized theta functions,J. Algebraic Geom. 9 (2000), no. 3, 459-527.
Degeneration of SL(n)-bundles on a reducible curve.Algebraic geometry in East Asia (Kyoto, 2001), 229-243, World Sci. Publishing, River Edge, NJ, 2002.
Factorization of generalized theta functions in the reducible case.Ark. Mat. 41 (2003), no. 1, 165-202.
(with S.-L. Tan and K. Zuo) Families of K3 surfaces over curves reaching the Arakelov-Yau type upper bounds and modularity,Math. Res. Lett. 10 (2003), no. 2-3, 323-342.
Moduli spaces of SL(r)-bundles on singular irreducible curves.Asian J. Math. 7 (2003), no. 4, 609-625.
(with I-Hsun Tsai) Hitchin’s connection and differential operators with values in the determinant bundle.J. Differential Geom. 66 (2004), no. 2, 303-343.
Logarithmic heat projective operators, Comm. Algebra 33(2005), no. 2, 425-454.
Minimal rational curves on moduli spaces of stable bundles.Math. Ann. 331 (2005), no. 4, 925-937.
(with H. Esnault and P. H. Hai) On Nori’s fundamental group scheme.Geometry and dynamics of groups and spaces, 377-398,Progr. Math., 265, Birkh?user, Basel, 2008.
Remarks on Gieseker’s degeneration and its normalization.Third International Congress of Chinese Mathematicians. Part 1, 2,177-191, AMS/IP Stud. Adv. Math., 42, pt.1, 2, Amer. Math. Soc., Providence, RI, 2008.
Direct images of bundles under Frobenius morphisms.Invent. Math. Vol. 173 (2008), no. 2, 427--447.
(with N. Mok) Remarks on lines and miminal rational curves.Science in China Serises A: Mathematics Vol. 52 (2009), no. 6, 1-16.