人物經(jīng)歷
冉啟文于1983年畢業(yè)于西南師范大學(xué)(西南大學(xué)前身之一)數(shù)學(xué)系,并被分配到重慶大學(xué)任教。1985年考入哈爾濱工業(yè)大學(xué)數(shù)學(xué)系攻讀碩士學(xué)位,次年再次考入中國(guó)科學(xué)院應(yīng)用數(shù)學(xué)研究所應(yīng)用概率統(tǒng)計(jì)專業(yè)攻讀碩士學(xué)位。1988年取得理學(xué)碩士學(xué)位并進(jìn)入哈爾濱工業(yè)大學(xué)任教。1995年晉升副教授,次年獲得應(yīng)用數(shù)學(xué)專業(yè)碩士研究生導(dǎo)師資格,同年,考入哈爾濱工業(yè)大學(xué)計(jì)算機(jī)系計(jì)算機(jī)應(yīng)用專業(yè)攻讀博士學(xué)位。1999年獲得博士學(xué)位后于次年進(jìn)入哈爾濱工業(yè)大學(xué)電子科學(xué)與技術(shù)博士后流動(dòng)站進(jìn)行博士后研究工作。在此期間參與香港理工大學(xué)計(jì)算機(jī)系的聯(lián)合課題“分?jǐn)?shù)傅立葉變換理論及應(yīng)用”的研究。2002年博士后流動(dòng)站出站,回到哈爾濱工業(yè)大學(xué)
數(shù)學(xué)系任教,次年獲得香港特別行政區(qū)政府資助再次與香港理工大學(xué)計(jì)算機(jī)系進(jìn)行聯(lián)合課題研究,同年晉職哈爾濱工業(yè)大學(xué)教授,2004年獲得哈爾濱工業(yè)大學(xué)電子科學(xué)與技術(shù)一級(jí)學(xué)科物理電子學(xué)二級(jí)學(xué)科的博士生導(dǎo)師資格。
研究方向
衛(wèi)星激光通信、信息光學(xué)、信息與通信理論、應(yīng)用數(shù)學(xué)。二十多年來,主要的學(xué)術(shù)研究興趣是小波理論和分?jǐn)?shù)傅立葉變換理論及其在光學(xué)、通信、圖像處理和信號(hào)處理等領(lǐng)域的應(yīng)用,主持和參與完成十五項(xiàng)國(guó)家自然科學(xué)基金課題、省部和校級(jí)基金課題、863國(guó)家高技術(shù)研究課題、973國(guó)家重大基礎(chǔ)研究課題,獲得航天部科技進(jìn)步獎(jiǎng)一項(xiàng),黑龍江省教學(xué)成果獎(jiǎng)兩項(xiàng),出版學(xué)術(shù)專著四部、教材一本,在國(guó)內(nèi)外學(xué)術(shù)期刊正式發(fā)表學(xué)術(shù)研究論文四十余篇。
主要作品
學(xué)術(shù)專著
(部分)
[1] 冉啟文, 譚立英. 《分?jǐn)?shù)傅立葉光學(xué)導(dǎo)論》. 科學(xué)出版社,2004年
[2] 冉啟文, 譚立英. 《小波分析與分?jǐn)?shù)傅立葉變換及應(yīng)用》.國(guó)防工業(yè)出版社,2003年
[3] 冉啟文. 《小波變換與分?jǐn)?shù)傅立葉變換理論及應(yīng)用》.哈爾濱工業(yè)大學(xué)出版社,2003年
[4] 冉啟文. 《小波理論及應(yīng)用》. 哈爾濱工業(yè)大學(xué)出版社,1995年
學(xué)術(shù)論文
(部分)
[1] Qiwen RAN, Daniel S. YEUNG, Eric C. C. TSANG and Qi WANG, General Multifractional Fourier Transform method based on the Generalized Permutation Matrix group, IEEE Transactions on signal processing, Vol. 53, No. 1, January 2005, pp. 83-98(IF:2.335)
[2] Qiwen RAN, Haiying Zhang, Jin Zhang, Liying Tan and Jing Ma, deficiencies of the encryptography based on multi-parameters fractional Fourier transform, Optics Letters, 34(11), 1729-1731(2009)(IF:3.772)
[3] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Generalized Prolate Spheroidal Wave Functions Associated with Linear Canonical Transform. IEEE Transaction on Signal Processing, Vol.58, No.6, pp.3032-3041, 2010(IF:2.335)
[4] Zhu B H, Liu S T and RAN Q W. optical image encryption based on multifractional Fourier transforms. Optics letters 2000,25(16) 1159-1161(IF:3.772)
[5] RAN qi-wen, Yuan lin, Tan li-ying, Ma jing and Wang qi, High order generalized permutational fractional Fourier transforms. Chinese Physics. 2004, 13(2): 178-186(IF:1.680)
[6] Yeung Daniel S, RAN Qiwen, Tsang Eric C C and Teo Kok Lay. Complete way to fractionalize Fourier transform. Optics Communications. 2004, 230: 55-57(IF:1.552)
[7] Hui Zhao, Qiwen RAN, Jing Ma and Liying Tan, On bandlimited signals associated with linear canonical transform, IEEE signal processing Letters, Vol. 16, No. 5, pp.343-345, May 2009(IF:1.203)
[8] Hui Zhao, Qiwen RAN, Liying Tan and Jing Ma. Reconstruction of bandlimited signals in linear canonical transform domain from finite nonuniformlu spaced samples, IEEE Signal Processing Letters, 16(12): 1047-1050, 2009(IF:1.203)
[9] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan, A convolution and product theorem for the linear canonical transform, IEEE signal processing letters, Vol.16, No.10, 853-856, October 2009)(IF:1.203)
[10] Deyun Wei, Qiwen RAN, Yuanmin Li. Generalized Sampling Expansion for Bandlimited signals Associated with the Fractional Fourier Transform. IEEE Signal Processing Letters, 17(6),pp. 595-598, 2010(IF:1.203)
[11] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan. Reply to “Comment on u2018A convolution and product theorem for the linear canonical transformu2019 ”. IEEE Signal Processing Letters, 17(6), pp. 617-618, 2010(IF:1.203)
[12] Qiwen RAN, Hui Zhao, Liying Tan and Jing Ma. Sampling of Bandlimited Signals in Fractional Fourier Transform Domain. Circuits, Systems, and Signal Processing, 29(3):459-467,2010
[13] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Linear canonical ambiguity function and linear canonical transform moments. Optik, In press, 2010
[14] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling Theorem Associated with Multiple-Parameter Fractional Fourier Transform. Journal of Computers, 5(5):695-702, 2010
[15] RAN qi-wen, Wang qi, Ma jing and Tan li-ying. Multifractional Fourier Transform method and its Applications to Image Encryption. Chinese Journal of Electronics, 2003,12(1): 29-34(IF:0.148)
[16] RAN Q W, Feng Y J, Wang J Z and Wu Q T. The Discrete Fractional Fourier Transform and Its Simulation. Chinese Journal of Electronics 2000, 9(1) p. 70-75(IF:0.148)
[17] Zhang, Haiying, RAN, Qiwen, Zhang, Jin. Optical image encryption and multiple parameter weighted fractional fourier transform. Guangxue Xuebao/Acta Optica Sinica 28(2): 117-120, December 2008
[18] Qiwen RAN, Zhongzhao Zhang, Deyun Wei and Shaxue Jun. “Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix,” Electrical and Computer Engineering, 2009. CCECE ’09. Canadian Conference on 3-6, Page(s):555u2013558, May 2009
[19] RAN, Qi-Wen, Zhang, Hai-Ying, Zhang, Zhong-Zhao, Sha, Xue-Jun. The analysis of the discrete fractional Fourier transform algorithms, 2009 Canadian Conference on Electrical and Computer Engineering, CCECE ’09, 979-982, 2009
[20] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling analysis in weighted fractional Fourier transform domain, Computational Sciences and Optimization, 2009. International Joint Conference on, 1: 878-881, Apr. 2009