人物經(jīng)歷
學(xué)習(xí)經(jīng)歷
2000—2004,理學(xué)學(xué)士。華中農(nóng)業(yè)大學(xué),生命科學(xué)與技術(shù)學(xué)院,生物技術(shù)(本碩連讀)專(zhuān)業(yè)/Huazhong Agricultural University, Bachelor’s Degree;
2003—2009,理學(xué)博士。華中農(nóng)業(yè)大學(xué),生命科學(xué)與技術(shù)學(xué)院,作物遺傳改良國(guó)家重點(diǎn)實(shí)驗(yàn)室,生化與分子生物學(xué)專(zhuān)業(yè)/Huazhong Agricultural University, PhD.
工作經(jīng)歷
2010—2014,博士后,加州大學(xué)伯克利分校,植物與微生物學(xué)系/Department of Plant and Microbial Biology, University of California, Berkeley, Postdoctoral Researcher.
2015—今,研究員,博士生導(dǎo)師,武漢大學(xué)生命科學(xué)學(xué)院/College of Life Sciences, Wuhan University, Professor.
教育科研
研究領(lǐng)域
1)植物光合作用的調(diào)控機(jī)制。我們以水稻和擬南芥為材料研究光合作用電子傳遞、能量轉(zhuǎn)換、光合系統(tǒng)的組裝、光合作用的調(diào)控等科學(xué)問(wèn)題。結(jié)合生物信息學(xué)、遺傳學(xué)和分子生物學(xué)的方法克隆葉綠體發(fā)育、光合作用相關(guān)的新基因,并解析其作用機(jī)制。
We study how photosynthetic energy conversion works, how it is regulated, and how it might be improved to help meet the worldu2019s needs for food and fuel. We use rice and Arabidopsis and interdisciplinary approaches to investigate fundamental questions about assembly, regulation, and dynamics of photosynthesis.
2)植物抗逆性研究。干旱、高鹽、低溫、高光及營(yíng)養(yǎng)缺乏等非生物逆境會(huì)影響植物的生長(zhǎng)發(fā)育。為了適應(yīng)不斷變化的自然環(huán)境,植物有其自身的應(yīng)對(duì)機(jī)制。我們的興趣在于克隆植物抗逆應(yīng)答和信號(hào)傳導(dǎo)的相關(guān)基因,解析其分子機(jī)制及生物學(xué)功能,并將基礎(chǔ)理論研究的成果應(yīng)用于水稻非生物逆境的抗性改良。
Our goal is to understand the molecular mechanism underlying plant response and adaptation to its environment. Several proteins and pathways have been identified that function in plant responses to environmental stress conditions including salt, drought, cold, high light, and poor nitrite. Manipulation of stress response genes and pathways can therefore enhance the growth of plants under abiotic stress, impacting agriculture and environment.
科研課題
武漢大學(xué)人才引進(jìn)啟動(dòng)費(fèi),2015-2017;
國(guó)家自然科學(xué)基金面上項(xiàng)目,2016-2019
代表論文
1.Xin Hou, Kabin Xie, Jialing Yao, Zhuyun Qi, and Lizhong Xiong*. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A, 2009, 106: 6410-6415.
2.Xin Hou, Aigen Fu, Veder Garcia, Bob B. Buchanan*, and Sheng Luan*. PSB27: a thylakoid protein enabling Arabidopsis to adapt to changing light intensity. Proc Natl Acad Sci U S A, 2015, 112: 1613-1618.
3. Xipeng Ding#,Xin Hou#, Kabin Xie, and Lizhong Xiong*. Genome-wide dentification of BURP domainu2013containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta, 2009, 230: 149-163. (# co-first author).
4. Yufen Che, Aigen Fu,Xin Hou, Bob B. Buchanan*, and Sheng Luan*. Arabidopsis D1 C-terminal peptidase is essential for photosystem II assembly and function. Proc Natl Acad Sci U S A, 2013, 110:16247-52.
5. Kabin Xie, Jianqiang Shen,Xin Hou, Jialing Yao, Xianghua Li, Jinhua Xiao, and Lizhong Xiong*. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol. 2012, 158:1382-94.
6. Yujie Fang, Kabin Xie, Xin Hou, Honghong Hu, Lizhong Xiong*. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics, 2010, 283: 157-169.
7. Yan Xu, Wei Zong,Xin Hou, Jialing Yao, Hongbo Liu, Xianghua Li, Yunde Zhao, and Lizhong Xiong*. OsARID3, An AT-rich Interaction Domain-containing Protein Is Required for Shoot Meristem Development in Rice. Plant Journal, 2015, 83: 806-817.